Skip to main content

Bedrock

Usage

import { BEDROCK_MODELS, Bedrock } from "@llamaindex/community";

Settings.llm = new Bedrock({
model: BEDROCK_MODELS.ANTHROPIC_CLAUDE_3_HAIKU,
region: "us-east-1", // can be provided via env AWS_REGION
credentials: {
accessKeyId: "...", // optional and can be provided via env AWS_ACCESS_KEY_ID
secretAccessKey: "...", // optional and can be provided via env AWS_SECRET_ACCESS_KEY
},
});

Currently only supports Anthropic and Meta models:

ANTHROPIC_CLAUDE_INSTANT_1 = "anthropic.claude-instant-v1";
ANTHROPIC_CLAUDE_2 = "anthropic.claude-v2";
ANTHROPIC_CLAUDE_2_1 = "anthropic.claude-v2:1";
ANTHROPIC_CLAUDE_3_SONNET = "anthropic.claude-3-sonnet-20240229-v1:0";
ANTHROPIC_CLAUDE_3_HAIKU = "anthropic.claude-3-haiku-20240307-v1:0";
ANTHROPIC_CLAUDE_3_OPUS = "anthropic.claude-3-opus-20240229-v1:0"; // available on us-west-2
ANTHROPIC_CLAUDE_3_5_SONNET = "anthropic.claude-3-5-sonnet-20240620-v1:0";
ANTHROPIC_CLAUDE_3_5_HAIKU = "anthropic.claude-3-5-haiku-20241022-v1:0";
META_LLAMA2_13B_CHAT = "meta.llama2-13b-chat-v1";
META_LLAMA2_70B_CHAT = "meta.llama2-70b-chat-v1";
META_LLAMA3_8B_INSTRUCT = "meta.llama3-8b-instruct-v1:0";
META_LLAMA3_70B_INSTRUCT = "meta.llama3-70b-instruct-v1:0";
META_LLAMA3_1_8B_INSTRUCT = "meta.llama3-1-8b-instruct-v1:0"; // available on us-west-2
META_LLAMA3_1_70B_INSTRUCT = "meta.llama3-1-70b-instruct-v1:0"; // available on us-west-2
META_LLAMA3_1_405B_INSTRUCT = "meta.llama3-1-405b-instruct-v1:0"; // available on us-west-2, tool calling supported
META_LLAMA3_2_1B_INSTRUCT = "meta.llama3-2-1b-instruct-v1:0"; // only available via inference endpoints (see below)
META_LLAMA3_2_3B_INSTRUCT = "meta.llama3-2-3b-instruct-v1:0"; // only available via inference endpoints (see below)
META_LLAMA3_2_11B_INSTRUCT = "meta.llama3-2-11b-instruct-v1:0"; // only available via inference endpoints (see below), multimodal and function call supported
META_LLAMA3_2_90B_INSTRUCT = "meta.llama3-2-90b-instruct-v1:0"; // only available via inference endpoints (see below), multimodal and function call supported
AMAZON_NOVA_PRO_1 = "amazon.nova-pro-v1:0";
AMAZON_NOVA_LITE_1 = "amazon.nova-lite-v1:0";
AMAZON_NOVA_MICRO_1 = "amazon.nova-micro-v1:0";

You can also use Bedrock's Inference endpoints by using the model names:

// US
US_ANTHROPIC_CLAUDE_3_HAIKU = "us.anthropic.claude-3-haiku-20240307-v1:0";
US_ANTHROPIC_CLAUDE_3_OPUS = "us.anthropic.claude-3-opus-20240229-v1:0";
US_ANTHROPIC_CLAUDE_3_SONNET = "us.anthropic.claude-3-sonnet-20240229-v1:0";
US_ANTHROPIC_CLAUDE_3_5_SONNET = "us.anthropic.claude-3-5-sonnet-20240620-v1:0";
US_ANTHROPIC_CLAUDE_3_5_SONNET_V2 =
"us.anthropic.claude-3-5-sonnet-20241022-v2:0";
US_META_LLAMA_3_2_1B_INSTRUCT = "us.meta.llama3-2-1b-instruct-v1:0";
US_META_LLAMA_3_2_3B_INSTRUCT = "us.meta.llama3-2-3b-instruct-v1:0";
US_META_LLAMA_3_2_11B_INSTRUCT = "us.meta.llama3-2-11b-instruct-v1:0";
US_META_LLAMA_3_2_90B_INSTRUCT = "us.meta.llama3-2-90b-instruct-v1:0";
US_AMAZON_NOVA_PRO_1 = "us.amazon.nova-pro-v1:0";
US_AMAZON_NOVA_LITE_1 = "us.amazon.nova-lite-v1:0";
US_AMAZON_NOVA_MICRO_1 = "us.amazon.nova-micro-v1:0";

// EU
EU_ANTHROPIC_CLAUDE_3_HAIKU = "eu.anthropic.claude-3-haiku-20240307-v1:0";
EU_ANTHROPIC_CLAUDE_3_SONNET = "eu.anthropic.claude-3-sonnet-20240229-v1:0";
EU_ANTHROPIC_CLAUDE_3_5_SONNET = "eu.anthropic.claude-3-5-sonnet-20240620-v1:0";
EU_META_LLAMA_3_2_1B_INSTRUCT = "eu.meta.llama3-2-1b-instruct-v1:0";
EU_META_LLAMA_3_2_3B_INSTRUCT = "eu.meta.llama3-2-3b-instruct-v1:0";

Sonnet, Haiku and Opus are multimodal, image_url only supports base64 data url format, e.g. 

Full Example

import { BEDROCK_MODELS, Bedrock } from "llamaindex";

Settings.llm = new Bedrock({
model: BEDROCK_MODELS.ANTHROPIC_CLAUDE_3_HAIKU,
});

async function main() {
const document = new Document({ text: essay, id_: "essay" });

// Load and index documents
const index = await VectorStoreIndex.fromDocuments([document]);

// Create a query engine
const queryEngine = index.asQueryEngine({
retriever,
});

const query = "What is the meaning of life?";

// Query
const response = await queryEngine.query({
query,
});

// Log the response
console.log(response.response);
}

Agent Example

import { BEDROCK_MODELS, Bedrock } from "@llamaindex/community";
import { FunctionTool, LLMAgent } from "llamaindex";

const sumNumbers = FunctionTool.from(
({ a, b }: { a: number; b: number }) => `${a + b}`,
{
name: "sumNumbers",
description: "Use this function to sum two numbers",
parameters: {
type: "object",
properties: {
a: {
type: "number",
description: "The first number",
},
b: {
type: "number",
description: "The second number",
},
},
required: ["a", "b"],
},
},
);

const divideNumbers = FunctionTool.from(
({ a, b }: { a: number; b: number }) => `${a / b}`,
{
name: "divideNumbers",
description: "Use this function to divide two numbers",
parameters: {
type: "object",
properties: {
a: {
type: "number",
description: "The dividend a to divide",
},
b: {
type: "number",
description: "The divisor b to divide by",
},
},
required: ["a", "b"],
},
},
);

const bedrock = new Bedrock({
model: BEDROCK_MODELS.META_LLAMA3_1_405B_INSTRUCT,
...
});

async function main() {
const agent = new LLMAgent({
llm: bedrock,
tools: [sumNumbers, divideNumbers],
});

const response = await agent.chat({
message: "How much is 5 + 5? then divide by 2",
});

console.log(response.message);
}